Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum.
نویسندگان
چکیده
A single dose of typical neuroleptic, haloperidol, has been demonstrated to increase the expression of neurotensin/neuromedin N (NT/N) mRNA in the dorsolateral striatum within 1 hr of its administration (Merchant et al., 1991). The present study further investigated neuroleptic-induced regulation of NT/N gene transcription. Levels of NT/N mRNA were examined at various times following a single dose of haloperidol (1 mg/kg, i.p.) or the atypical antipsychotic clozapine (20, 30, or 40 mg/kg, i.p.) by in situ hybridization histochemistry and quantitative solution hybridization. In the dorsolateral striatum, the two drugs had strikingly different effects; haloperidol rapidly (within 30 min) increased the expression of mature NT/N mRNA while virtually no increase was observed in response to nontoxic doses of clozapine at any of the time points examined. Following haloperidol, maximal induction occurred at 7 hr, at which time NT/N mRNA levels were an order of magnitude higher than basal levels. By 20 hr after haloperidol, there was a significant decline in striatal NT/N mRNA levels. In situ hybridization analysis using an intron-derived probe revealed that haloperidol-induced increases in mature NT/N mRNA levels in the striatum were preceded by a transient increase in intron-containing NT/N gene transcripts. These data strongly indicate that acute haloperidol treatment results in transient transcriptional activation of NT/N gene, although a concomitant effect on the stability of NT/N primary transcripts cannot be ruled out. In contrast to their differential effects in the dorsolateral striatum, a single dose of both haloperidol and clozapine induced a small but significant increase in NT/N mRNA expression in the shell sector of the nucleus accumbens. These results raise the possibility that NT neurons in the nucleus accumbens may, at least in part, mediate the antipsychotic effects of classical neuroleptics, whereas NT cells in the dorsolateral region of the striatum may be involved in mediating other effects of typical neuroleptics such as extrapyramidal motor symptoms.
منابع مشابه
Effects of acute and subchronic administration of typical and atypical antipsychotic drugs on the neurotensin system of the rat brain.
The acute and subchronic effects of a variety of doses of a prototype typical (haloperidol) or one of several atypical antipsychotic drugs (clozapine, olanzapine, risperidone, quetiapine, or sertindole) on regional brain neurotensin (NT) tissue concentrations, and NT receptor binding were examined. Acute administration of haloperidol, clozapine, olanzapine, and risperidone dose-dependently incr...
متن کاملEffects of psychotropic drugs on nerve growth factor protein levels in the rat brain
Introduction: Psychotropic drugs exert their effects, in part, by increasing neurotrophin levels in the brain. Nerve growth factor (NGF) protein levels after treatment with only a limited number of psychotropics have been determined. The present study was designed in order to evaluate the effects of acute and chronic administration of different psychotropic drugs on NGF protein levels in fiv...
متن کاملEffects of Different Psychotropic Agents on the Central Nerve Growth Factor Protein
Objective(s) Psychotropic medications produce their effects, in part, through increasing neurotrophin levels in the brain. Since studies concerning nerve growth factor (NGF) analysis have been limited in scope, in the current experiments we investigated the effects of diverse psychotropic agents on NGF protein levels in various brain regions of rat. Materials and Methods Male Wistar rats rec...
متن کاملAtypical antipsychotic drugs selectively increase neurotensin efflux in dopamine terminal regions.
Typical antipsychotic drugs, such as haloperidol and chlorpromazine, increase synthesis of the neuropeptide neurotensin (NT) in both the striatum and the nucleus accumbens, whereas atypical antipsychotic drugs, such as clozapine and olanzapine, do so only in the nucleus accumbens. By using in vivo microdialysis, we now report that acute administration of haloperidol, clozapine, or olanzapine fa...
متن کاملDifferential regulation of D2 and D4 dopamine receptor mRNAs in the primate cerebral cortex vs. neostriatum: effects of chronic treatment with typical and atypical antipsychotic drugs.
The RNase Protection Assay was used to examine the regulation of D2 and D4 dopamine receptor mRNAs in the cerebral cortex and neostriatum of nonhuman primates after chronic treatment with a wide spectrum of antipsychotic medications (chlorpromazine, clozapine, haloperidol, molindone, olanzapine, pimozide, remoxipride and risperidone). Tiapride, a D2 antagonist that lacks antipsychotic activity,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1992